Abstract

In this paper, the dynamic buckling of axisymmetric circular cylindrical shells subjected to axial impact is investigated theoretically and experimentally. The von Mises yield criterion is used for the elastic–plastic cylindrical shell made of linear strain hardening material in order to derive the constitutive relations between stress and strain increments. Nonlinear dynamic circular cylindrical shell equations are solved with using finite difference method for two types of loading which are stationary cylindrical shells impacted axially and traveling cylindrical shells impacted against a rigid wall. Experimental tests for two types of loading are performed by gas gun. Theoretical and experimental results for cylindrical shells under axial impact for different loading conditions are reported and it is found that there is a good agreement between them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.