Abstract

Theoretical analysis was applied to analyze the refractive-index distribution (RID) and bandwidth (BW) of gradient-index polymer optical fibers (GI POFs) prepared by a centrifugal field process. The RID of the prepared GI POF could be represented by the equation of n(r) = n1[1 - 2delta(r/alpha)g](1/2). The studied material systems were poly(hexafluoroisopropyl 2-fluoroacrylate) (PHFIP 2-FA)/dibutyl phthalate (DBP) and poly(methyl methacrylate) (PMMA)/benzyl benzoate (BEN). The RID and the BW were significantly affected by an essential parameter k, which was related to thematerial properties (density difference and molecular weight) and processing properties (rotating speed, temperature, and radius). As k increased, the characteristic constant of RID, g, decreased to a minimum and then increased sharply, owing to the separation of the polymer and the dopant. On the other hand, the relative refractive-index difference of RID, delta, increased to a steady value after k increased to a certain value. The variation of RID with k resulted in a local minimum of intermodal dispersion, and thus a maximum bandwidth was obtained. The maximum BW of the PHFIP 2-FA/DBP and PMMA/BEN systems at 1550 nm (100-m fiber length and 2-nm spectral width) for the case of k not equal to 0 were 6.7 and 3.2 Gb/s, respectively. The wavelength of light source affects the BW significantly only at k around zero because of the importance of the intramodal dispersion in this case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call