Abstract

The experimental solid-state terahertz (THz) spectrum (3 to 120 cm(-1)) of the high explosive pentaerythritol tetranitrate (PETN, C(5)H(6)N(4)O(12)) has been modeled using solid-state density functional theory (DFT) calculations. Solid-state DFT, employing the BP density functional, is in best qualitative agreement with the features in the previously reported THz spectrum. The crystal environment of PETN includes numerous intermolecular hydrogen-bonding interactions that contribute to large (up to 80 cm(-1)) calculated shifts in molecular normal-mode positions in the solid state. Comparison of the isolated-molecule and solid-state normal-mode calculations for a series of density functionals reveals the extent to which the inclusion of crystal-packing interactions and the relative motions between molecules are required for correctly reproducing the vibrational structure of solid-state THz spectra. The THz structure below 120 cm(-1) is a combination of both intermolecular (relative rotations and translations) and intramolecular (torsions, large amplitude motions) vibrational motions. Vibrational-mode analyses indicate that the first major feature (67.2 cm(-1)) in the PETN THz spectrum contains all of the optical rotational and translational cell modes and no internal (molecular) vibrational modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call