Abstract
Diffusion-induced stress caused by the insertion and extraction of lithium ions can result in the swelling, fracture, and even pulverization of the battery electrodes. However, only a few previous studies consider the phenomenon of phase transformation in an electrode and rarely take the impacts of cylindrical shape with transversely isotropic properties into account. In this paper, by researching the electronic reaction and diffusion process, a new theoretical model is established to study the stress level and mechanical behavior in cylindrical electrodes with phase transformation under galvanostatic operation. From the model, the brittle center and edge cracks are analyzed to investigate the influence of the initiation position on crack propagation. The tangential stress plays an important role in cracking on the electrodes. Furthermore, it is found for the center crack that it tends to grow more easily in the first insertion when the crack locates at the phase interface position, while for the edge crack, it tends to grow more easily in the early stage of lithium ion extraction. Moreover, manufacturing the electrodes with the appropriate property ratios, the diffusion-induced stress level and brittle crack-induced stress intensity factor value may decrease, and the electrode fracture phenomenon could be alleviated to some degree. Overall, our work provides a theoretical basis for the electrode phase transformation and cracking when the battery is working, and it may help us understand more about the internal mechanical behavior of the battery electrodes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have