Abstract

The limitations of the efficiency of ammonium-neutralizing erythrocyte-bioreactors based on glutamate dehydrogenase and alanine aminotransferase reactions were analyzed using a mathematical model. At low pyruvate concentrations in the external medium (below about 0.3 mM), the main limiting factor is the rate of pyruvate influx into the erythrocyte from the outside, and at higher concentrations, it is the disappearance of a steady state in glycolysis if the rate of ammonium processing is higher than the critical value (about 12 mM/h). This rate corresponds to different values of glutamate dehydrogenase activity at different concentrations of pyruvate in plasma. Oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) by glutamate dehydrogenase decreases the fraction of NADPH in the constant pool of nicotinamide adenine dinucleotide phosphates (NADP + NADPH). This, in turn, activates the pentose phosphate pathway, where NADP reduces to NADPH. Due to the increase in flux through the pentose phosphate pathway, stabilization of the ATP concentration becomes impossible; its value increases until almost the entire pool of adenylates transforms into the ATP form. As the pool of adenylates is constant, the ADP concentration decreases dramatically. This slows the pyruvate kinase reaction, leading to the disappearance of the steady state in glycolysis.

Highlights

  • Enzymes can be used to treat a number of diseases

  • We showed earlier [12] that the efficiency of EBRs containing glutamate dehydrogenase (GDH) and alanine aminotransferase (AAT) is not associated with the transport of AKG and/or GLU across the cell membrane

  • The limitation on the rate of ammonium consumption in the considered EBRs is associated with the transport of pyruvate through the erythrocyte membrane and with a change in the proportion of nicotinamide adenine dinucleotide phosphate (NADPH) in the total pool (NADP + NADPH) during the work of the built-in enzyme system in the erythrocyte

Read more

Summary

Introduction

Enzymes can be used to treat a number of diseases. To alleviate the patient’s condition, it may be necessary to regulate the concentration of certain substances in the blood. This can be achieved by introducing enzymes into the bloodstream that catalyze reactions through which the target substance is produced or consumed. After administration, the plasma activity of the administered enzyme decreases due to the work of plasma proteases and the patient’s immune system. The administration of a foreign protein into the body can lead to severe allergic reactions

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.