Abstract

Previous studies found that reduced nicotinamide adenine dinucleotide phosphate (NADPH) protected neurons against ischemia/reperfusion-induced injury. In addition to ROS reduction and ATP increment, preliminary data suggested that NADPH inhibited ADP and thrombin-induced platelet aggregation. As the effect of NADPH on platelet function was not reported by other investigators, the actions of NADPH on platelet function and mechanisms of actions were investigated in the present study. In vitro studies, the effects of different concentrations of NADPH on platelet aggregation induced by ADP (10 μM), thrombin (0.05 U/mL) or AA (50 μM) were determined. The results showed that NADPH could inhibit platelet aggregation induced by ADP, thrombin or AA in a concentration dependent manner. When the inhibitory effects of NAD+, NADH, NADP+ and NADPH on platelet aggregation were compared, NADPH demonstrated the relatively best effect on platelet aggregation. In vivo studies, the effects of NADPH on platelet aggregation, tail bleeding time, coagulation response and ferric chloride-induced thrombosis were determined in mice or rats. The maximum aggregation rate of platelets of rats injected with NADPH (5 mg/kg) was lower than platelets from control rats. NADPH transiently prolonged tail bleeding time in mice at 30 min after the injection of NADPH (7.5 mg/kg), while aspirin (15 mg/kg) significantly prolonged the tail bleeding time in mice at all time points examined. NADPH (5 mg/kg), as well as aspirin (10 mg/kg), had no effect on coagulation response in rats. Using a FeCl3-induced abdominal aorta injury thrombosis model, administration of NADPH (5 mg/kg) significantly delayed the onset of vessel occlusion, while aspirin (10 mg/kg) almost completely prevented the vessel occlusion. With microscopic examination the thrombi in injured vessel sections of rats received NADPH were much smaller and less dense than that of rats received vehicle treatment. ADP induced an increase in phosphorylation of p38 and the effect was markedly inhibited by the p38 inhibitor SB203580. Similarly, NADPH also inhibited ADP-induced phosphorylation of p38. Similar to NADPH, SB203580 robustly inhibited ADP- and thrombin-induced platelet aggregation. In addition, NADPH also reduced ADP-induced increases in ROS in platelets. The current results demonstrated that NADPH inhibited platelet aggregation, oxidative stress and p38 phosphorylation, suggesting that NADPH might be a novel compound for management of high risk of cardiovascular disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call