Abstract
A theoretical analysis of quasi-one-dimensional, steady, inviscid, compressible channel flow at a low magnetic Reynolds number with variable cross-section is performed in this paper. A second-order nonlinear dynamical system describing the variation of physical parameters is investigated in the phase plane. The characteristics of all possible channel flow with a constant electromagnetic field are obtained by the phase plane and the isomorphism of labeled graphs. It is revealed that the magnetic interaction number novelly derived from the variation rate of the cross-sectional area could significantly affect the phase trajectory in the phase plane of dimensionless velocity and Mach number. Meanwhile, the phase trajectory is only dependent on this magnetic interaction number. Further analysis of the second-order dynamical system discovers five critical values in the range of the magnetic interaction number. These five critical values can divide the whole range into eight subsets under the isomorphism of labeled graphs, forming eight equivalence classes of the phase plane. The study of such eight equivalence classes reveals that the variable cross-section flow in the phase plane can be viewed as a linear superposition of constant cross-section magnetohydrodynamic flow and isentropic flow, the weight ratio being exactly the magnetic interaction number. Consequently, for the divergent channel, the acceleration region in the supersonic zone is larger than that of the constant cross-section flow, while for the convergent channel, only the acceleration region in the subsonic zone is larger than that of the constant cross-section flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.