Abstract

Fully developed compressible turbulent channel flow (Ma = 0.8, Re = 3300) is numerically simulated, and the data base of turbulence is established. The statistics such as density-weighted mean velocity and RMS velocity fluctuations in semi-local coordinates agree well with those from other DNS data. High order statistics (skewness and flatness factors) of velocity fluctuations of compressible turbulence are reported for the first time. Compressibility effects are also discussed. Pressure-dilatation absorbs part of the kinetic energy and makes the streaks of compressible channel flow more smooth. The scaling laws of compressible channel flow are also discussed. The conclusions are: (a) Scaling law is found in the center area of the channel, (b) In this area, ESS is also found, (c) When Mach number is not very high, compressibility has little effect on scaling exponents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call