Abstract

We report a theoretical study of optical properties of AlGaAs/GaAs multiple quantum-well (MQW), slow-light devices based on excitonic population oscillations under applied external magnetic and electric fields using an analytical model for complex dielectric constant of Wannier excitons in fractional dimension. The results are shown for quantum wells (QWs) of different width. The significant characteristics of the exciton in QWs such as exciton energy and exciton oscillator strength (EOS) can be varied by application of external magnetic and electric fields. It is found that a higher bandwidth and an appropriate slow-down factor (SDF) can be achieved by changing the QW width during the fabrication process and by applying magnetic and electric fields during device functioning, respectively. It is shown that a SDF of is obtained at best.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.