Abstract

Here we present a comprehensive theoretical study of a porous-film sensor of fluid in Mach–Zehnder configuration. It is found that the penetration of a fluid into the film pores causes amplitude and phase modulation of the interferometer output signal, maximizing the sensitivity at a certain value of the fluid refractive index. We define the Fisher information for this interferometer and show that it is a good measure of its sensitivity, hence suitable as an evaluation function in sensor optimization. We propose the sensor structure and design thin films that maximize its sensitivity to water, alcohol solutions and oils. The estimated sensitivity of the order of to the fluid refractive index and of to the changes in the film thickness indicate the potential of this sensor for applications in biomedicine, chemistry and environmental protection, and as a tool for the film characterization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.