Abstract

Abstract EPR steering is an asymmetric quantum correlation, as such, it is an important resource for quantum information protocols, like those used in quantum key distribution that are of tremendous relevance nowadays. The security of the aforementioned protocols can be shown by using entropic uncertainty measures, which are based on quantum information quantities, among which the entropies are found. In this work, we propose an entropic measure of steering, starting from the detection of steering given in a previous entropic uncertainty relation-based criterion, as well as using a generalised entropy, the Tsallis entropies. We define the entropic measure of steering in terms of an indicator, a quantity depending on the entropies of the measurements of the system, which assigns a value to the steering content of quantum states, while also comprising the asymmetry property of steering. We investigate the properties of the proposed quantity as a measure of steering and its asymmetry and show how it can be used for specific examples. For instance, a class of noisy two-qubit states that includes the Werner states is used to demonstrate the potential of such a proposal. Furthermore, a comparison is also made with the detection of steering in these states using existing steering criteria and the amount of steering a geometric measure for the Werner state gives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.