Abstract
This paper has two results. The first is based on the surprising observation that the well-known ``least-recently-used'' paging algorithm and the ``balance'' algorithm for weighted caching are linear-programming primal-dual algorithms. This observation leads to a strategy (called ``Greedy-Dual'') that generalizes them both and has an optimal performance guarantee for weighted caching. For the second result, the paper presents empirical studies of paging algorithms, documenting that in practice, on ``typical'' cache sizes and sequences, the performance of paging strategies are much better than their worst-case analyses in the standard model suggest. The paper then presents theoretical results that support and explain this. For example: on any input sequence, with almost all cache sizes, either the performance guarantee of least-recently-used is O(log k) or the fault rate (in an absolute sense) is insignificant. Both of these results are strengthened and generalized in``On-line File Caching'' (1998).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.