Abstract

We aim at understanding for which (complex) values of the potential the pinning partition function vanishes. The pinning model is a Gibbs measure based on discrete renewal processes with power law inter-arrival distributions. We obtain some results for rather general inter-arrival laws, but we achieve a substantially more complete understanding for a specific one parameter family of inter-arrivals. We show, for such a specific family, that the zeros asymptotically lie on (and densely fill) a closed curve that, unsurprisingly, touches the real axis only in one point (the critical point of the model). We also perform a sharper analysis of the zeros close to the critical point and we exploit this analysis to approach the challenging problem of Griffiths singularities for the disordered pinning model. The techniques we exploit are both probabilistic and analytical. Regarding the first, a central role is played by limit theorems for heavy tail random variables. As for the second, potential theory and singularity analysis of generating functions, along with their interplay, will be at the heart of several of our arguments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.