Abstract

On a d-dimensional Riemannian, spin manifold (M, g) we consider non-linear, stochastic partial differential equations for spinor fields, driven by a Dirac operator and coupled to an additive Gaussian, vector-valued white noise. We extend to the case in hand a procedure, introduced in Dappiaggi et al (Commun Contemp Math 27(07):2150075, 2022), for the scalar counterpart, which allows to compute at a perturbative level the expectation value of the solutions as well as the associated correlation functions accounting intrinsically for the underlying renormalization freedoms. This framework relies strongly on tools proper of microlocal analysis and it is inspired by the algebraic approach to quantum field theory. As a concrete example we apply it to a stochastic version of the Thirring model proving in particular that it lies in the subcritical regime if d≤2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d\\le 2$$\\end{document}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.