Abstract
ABSTRACT Recent imaging observations with ALMA and other telescopes found widespread signatures of planet presence in protoplanetary discs at tens of au separations from their host stars. Here we point out that the presence of very massive planets at 0.1 au sized orbits can be deduced for protostars accreting gas at very high rates, when their discs display powerful Thermal Instability (TI) bursts. Earlier work showed that a massive planet modifies the nature of this instability, with outbursts triggered at the outer edge of the deep gap opened by the planet. We present simulations of this effect, finding two types of TI outbursts: downstream and upstream of the planet, which may or may not be causally connected. We apply our model to the outburst in Gaia20eae. We find that the agreement between the data and our disc TI model is improved if there is a planet of six Jupiter masses orbiting the star at 0.062 au separation. Gaia20eae thus becomes the second episodically erupting star, after FU Ori, where the presence of a massive planet is strongly suspected. Future observations of similar systems will constrain the mode and the frequency of planet formation in such an early epoch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Monthly Notices of the Royal Astronomical Society: Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.