Abstract

Along with the development of IoT applications, wearable devices are becoming popular for monitoring user data to provide intelligent service support. The wearable devices confront severe security issues compared with traditional short-range communications. Due to the limitations of computation capabilities and communication resources, it brings more challenges to design security solutions for the resource-constrained wearable devices in IoT applications. In this work, a yoking-proof-based authentication protocol (YPAP) is proposed for cloud-assisted wearable devices. In the YPAP, a physical unclonable function and lightweight cryptographic operators are jointly applied to realize mutual authentication between a smart phone and two wearable devices, and yoking-proofs are established for the cloud server to perform simultaneous verification. Meanwhile, Rubin logic-based security formal analysis is performed to prove that the YPAP has theoretical design correctness. It indicates that the proposed YPAP is flexible for lightweight wearable devices in IoT applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.