Abstract
Macroautophagy/autophagy is a degradative pathway that plays an important role in maintaining cellular homeostasis in eukaryotes. During autophagy, cisternal compartments called phagophores are generated to sequester intracellular components; these structures mature into autophagosomes, which deliver the cargo into lysosomes/vacuoles for degradation. Numerous autophagy-related (Atg) proteins are part of the core machinery that mediates autophagosome biogenesis. Atg9, a lipid scramblase and the only multispanning transmembrane protein among the core Atg machinery, traffics between cytoplasmic reservoirs and the phagophore assembly site (PAS) to provide membranes, recruit other Atg proteins and rearrange lipids on the phagophore membrane. However, the factors mediating Atg9 trafficking remain to be fully understood. In our recent study, we found that the yeast dynamin-like GTPase Vps1 (vacuolar protein sorting 1) is involved in autophagy and is important for Atg9 transport to the PAS. Moreover, we showed that Vps1 function in autophagy requires its GTPase and oligomerization activities. Interestingly, specific mutations in DNM2 (dynamin 2), one of the human homologs of Vps1 that have been linked with specific human diseases such as microcytic anemia and Charcot-Marie-Tooth, also impairs Atg9 transport to the PAS, suggesting that a defect in autophagy may underlay the pathophysiology of these severe human pathologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.