Abstract
ABSTRACT One of the leading mechanisms invoked to explain the existence of the radius valley is atmospheric mass-loss driven by X-ray and extreme-ultraviolet irradiation, with this process stripping the primordial envelopes of young, small planets to produce the observed bimodal distribution. We present an investigation into the TOI-431 and ν2 Lupi planetary systems, both of which host planets either side of the radius valley, to determine if their architectures are consistent with evolution by the X-ray/ultraviolet (XUV) mechanism. With XMM–Newton, we measure the current X-ray flux of each star, and see evidence for a stellar flare in the TOI-431 observations. We then simulate the evolution of all of the transiting planets across the two systems in response to the high-energy irradiation over their lifetimes. We use the measured X-ray fluxes as an anchor point for the XUV time evolution in our simulations, and employ several different models of estimating mass-loss rates. While the simulations for TOI-431 b encountered a problem with the initial calculated radii, we estimate a likely short (∼Myr) timespan for primordial envelope removal using reasonable assumptions for the initial planet. ν2 Lupi b is likely harder to strip, but is achieved in a moderate fraction of our simulations. None of our simulations stripped any of the lower density planets of their envelope, in line with prediction. We conclude that both systems are consistent with expectations for generation of the radius valley through XUV photoevaporation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.