Abstract

Both direct and indirect drive concepts of inertial confinement fusion rely on targets with cryogenic thermonuclear fuel shells for ignition. Experiments on the Shenguang-III prototype laser facility using laser-driven gas-filled hohlraums show distinct differences between cryogenic (20 K) and warm hohlraums. Although the measured x-ray flux in the photon range from 1.6 to 4.4 keV (Au M-band) is identical between cryogenic and warm hohlraums, the cryogenic hohlraum has a much slower rate of rise and is 20% lower in peak intensity of x-ray flux in the photon range from 0.1 to 4 keV. The reasons for this drive deficit between cryogenic and warm hohlraums are investigated using a similar series of hohlraum experiments. The experiments employ three types of hohlraums to distinguish the effect of a shroud window membrane and condensates. Warm hohlraums with a shroud window membrane replicate the slower rate of rise of radiation flux of cryogenic targets. When the shroud window is present, the measured x-ray flux in the hohlraum shows a drive deficit that decreases with time. However, the measured deficit increases as the viewing angle increases. All of these results indicate that the portion of the shroud not illuminated by the lasers absorbs the outgoing x-ray flux from the hohlraum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.