Abstract

Abstract We present an initial analysis of the X-Ray Imaging and Spectroscopy Mission (XRISM) first-light observation of the supernova remnant (SNR) N 132D in the Large Magellanic Cloud. The Resolve microcalorimeter has obtained the first high-resolution spectrum in the 1.6–10 keV band, which contains K-shell emission lines of Si, S, Ar, Ca, and Fe. We find that the Si and S lines are relatively narrow, with a broadening represented by a Gaussian-like velocity dispersion of $\sigma _v \sim 450$ km s$^{-1}$. However, the Fe He$\alpha$ lines are substantially broadened with $\sigma _v \sim 1670$ km s$^{-1}$. This broadening can be explained by a combination of the thermal Doppler effect due to the high ion temperature and the kinematic Doppler effect due to the SNR expansion. Assuming that the Fe He$\alpha$ emission originates predominantly from the supernova ejecta, we estimate the reverse shock velocity at the time when the bulk of the Fe ejecta were shock heated to be $-1000 \lesssim V_{\rm rs}$ (km s$^{-1}$) $\lesssim 3300$ (in the observer frame). We also find that Fe Ly$\alpha$ emission is redshifted with a bulk velocity of $\sim 890$ km s$^{-1}$, substantially larger than the radial velocity of the local interstellar medium surrounding N 132D. These results demonstrate that high-resolution X-ray spectroscopy is capable of providing constraints on the evolutionary stage, geometry, and velocity distribution of SNRs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.