Abstract

There are at least 25 supernova remnants (SNR) in the Large Magellanic Cloud (LMC) with X-ray luminosities exceeding 2 × 1035 erg s-1. As many as 25 other SNR may be contained in the X-ray survey conducted with the Einstein Observatory of the LMC. The X-ray spectra of the 6 SNR observed with the Solid State Spectrometer (SSS) resemble their galactic counterparts; two SNR, N157B and 0540–69.3, may emit X-rays primarily by synchrotron radiation. The density of the medium in which SNR are expanding inferred from the X-ray data appears to decrease with SNR diameter; the density of the ISM inferred from the Balmer lines of 4 new SNR in the LMC is much lower than that inferred from X-ray observations. The apparent thermal energy content of LMC SNR evolves with diameter, peaking at ~5 × 1050 ergs. The ratio of the densities of the X-ray and [SII] emitting plasmas is consistent with their being in pressure equilibrium. The SN rate in the LMC is ~1 per 100–200 years. This is the number of SN expected from other considerations. The number diameter relation of LMC SNR is consistent with free expansion. The X-ray data are difficult to understand in terms of traditional Sedov models on SNR evolution; probably ejecta and multiphase ISM are required to explain the X-ray properties of LMC SNR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call