Abstract
In this paper, we study questions related to the theory of stochastic processes on Lie nilpotent groups. In particular, we consider the stochastic process on the Heisenberg group H3(ℝ) whose trajectories satisfy the horizontal conditions in the stochastic sense relative to the standard contact structure on H3 (ℝ). It is shown that this process is a homogeneous Markov process relative to the Heisenberg group operation. There was found a representation in the form of a Wiener integral for a one-parameter linear semigroup of operators for which the Heisenberg sublaplacian generated by basis vector fields of the corresponding Lie algebra L(H3) is producing. The main method of solving the problem in this paper is using the path integrals technique, which indicates the common direction of further development of the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.