Abstract
Abstract. The problem of the local summability of the sub-Riemannian mean curvature H of a hypersurface M in the Heisenberg group, or in more general Carnot groups, near the characteristic set of M arises naturally in several questions in geometric measure theory. We construct an example which shows that the sub-Riemannian mean curvature H of a C2 surface M in the Heisenberg group H1 in general fails to be integrable with respect to the Riemannian volume on M .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.