Abstract

Fusai, Abrahams, and Sgarra (2006) employed the Wiener-Hopf technique to obtain an exact analytic expression for discretely monitored barrier option prices as the solution to the Black-Scholes partial differential equation. The present work reformulates this in the language of random walks and extends it to price a variety of other discretely monitored path-dependent options. Analytic arguments familiar in the applied mathematics literature are used to obtain fluctuation identities. This includes casting the famous identities of Baxter and Spitzer in a form convenient to price barrier, first-touch, and hindsight options. Analyzing random walks killed by two absorbing barriers with a modified Wiener-Hopf technique yields a novel formula for double-barrier option prices. Continuum limits and continuity correction approximations are considered. Numerically, efficient results are obtained by implementing Pade approximation. A Gaussian Black-Scholes framework is used as a simple model to exemplify the techniques, but the analysis applies to Levy processes generally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.