Abstract

The use of rapid-hardening cementitious materials for the emergency repair of critical infrastructure in coastal environments is becoming increasingly widespread, and concrete surface hydrophobic protection treatment is equally necessary to improve the durability of both new and old concrete. Among them, silane-based hydrophobic materials play an important role in concrete hydrophobic protection. Graphene oxide (GO)-modified silane materials can significantly improve the hydrophobic performance of coatings, but the hydrophobic mechanism of coatings modifying the sulfoaluminate cement’s main hydration product ettringite (AFt) has not yet been explored. In this study, molecular dynamics simulations were conducted to investigate the wetting properties of water droplets on the surface of AFt, isobutyltriethoxy silane (IBTS)-modified AFt, and IBTS/GO-modified AFt. It was found that the AFt substrate had good hydrophilicity, and the droplets could wet the interface through Ca-O ionic bonds and H-bonds. The IBTS coating initially impeded droplet wetting, but the adsorption stability of IBTS on the AFt substrate surface was poor under droplet action, leading to droplet penetration and dispersion of the IBTS coating on the AFt surface. However, the IBTS/GO coating significantly restricted droplet wetting due to the stable adsorption of GO on the AFt surface and the strong stability of hydrogen bonds between IBTS and GO. In conclusion, selecting a suitable bridging material between AFt and silane is crucial for improving the hydrophobic stability of silane coatings on sulfoaluminate cement materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call