Abstract

We prove the conjecture of George Weiss for contraction semigroups on Hilbert spaces, giving a characterization of infinite-time admissible observation functionals for a contraction semigroup, namely that such a functionalC is infinite-time admissible if and only if there is anM>0 such that $$\parallel C\left( {sI - A} \right)^{ - 1} \parallel \leqslant M\sqrt {\operatorname{Re} s} $$ for alls in the open right half-plane. HereA denotes the infinitesimal generator of the semigroup. The result provides a simultaneous generalization of several celebrated results from the theory of Hardy spaces involving Carleson measures and Hankel operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.