Abstract
В настоящей работе устанавливается существование слабого решения начально-краевой задачи для уравнений движения вязкоупругой жидкости с памятью вдоль траекторий негладкого поля скоростей и неоднородным граничным условием. Исследование предполагает аппроксимацию исходной задачи приближениями галеркинского типа с последующим предельным переходом на основе априорных оценок. Для исследования поведения траекторий негладкого поля скоростей используется теория регулярных лагранжевых потоков.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have