Abstract
In this paper, we present a new “Hamiltonian” approach for construction of integrable systems. We found an intermediate dispersive system of a Camassa–Holm type. This three-component system has simultaneously a high-frequency (short wave) limit equivalent to the remarkable WDVV associativity equations and a dispersionless (long wave) limit coinciding with a dispersionless limit of the Yajima–Oikawa system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have