Abstract

We consider the propagation of arbitrary electromagnetic pulses in anomalously dispersive dielectrics characterized by M relaxation processes. A partial differential equation for the electric field in the dielectric is derived and analyzed. This single equation describes a hierarchy of M + 1 wave types, each type characterized by an attenuation coefficient and a wave speed. Our analysis identifies a “skin-depth” where the pulse response is described by a telegrapher's equation with smoothing terms, travels with the wavefront speed, and decays exponentially. Past this shallow depth we show that the pulse response is described by a weakly dispersive advection-diffusion equation, travels with the sub-characteristic advection speed equal to the zero-frequency phase velocity in the dielectric, and decays algebraically. The analysis is verified with a numerical simulation. The relevance of our results to the development of numerical methods for such problems is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.