Abstract
The propagation of bipolar electromagnetic pulses in an array of semiconductor carbon nanotubes has been investigated. The inhomogeneity of the pulse field along the axis of the nanotubes has been taken into account for the first time. The evolution of the electromagnetic field and charge density in the sample has been described by the set of Maxwell's equations and the continuity equation. The possibility of stable propagation of bipolar electromagnetic pulses occurring in an array of nanotubes has been demonstrated by numerical simulation. It has been shown that the propagation of the electromagnetic pulses induces the redis� tribution of the electron density in the sample.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have