Abstract
The rovibrational spectrum of the water molecule is the crown jewel of high-resolution molecular spectroscopy. While its significance in numerous scientific and engineering applications and the challenges behind its interpretation have been well known, the extensive experimental analysis performed for this molecule, from the microwave to the ultraviolet, is admirable. To determine empirical energy levels for H216O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\bf{H}}}_{{\\bf{2}}}^{\\,{\\bf{16}}}{\\bf{O}}$$\\end{document}, this study utilizes an improved version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) scheme, which now takes into account multiplet constraints and first-principles energy-level splittings. This analysis delivers 19027 empirical energy values, with individual uncertainties and confidence intervals, utilizing 309 290 transition wavenumbers collected from 189 (mostly experimental) data sources. Relying on these empirical, as well as some computed, energies and first-principles intensities, an extensive composite line list, named CW2024, has been assembled. The CW2024 dataset is compared to lines in the canonical HITRAN 2020 spectroscopic database, providing guidance for future experimental investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.