Abstract

BackgroundTo evaluate the imaging biomarkers of human epidermal growth factor receptor 2 (HER2) positive breast cancer in comparison to other molecular subtypes and to determine the feasibility of identifying hormone receptor (HR) status and lymph node metastasis status using volumetric-tumour histogram-based analysis through intravoxel incoherent motion (IVIM) and non-Gaussian diffusion.MethodsThis study included 145 breast cancer patients with 148 lesions between January and November in 2018. Among the 148 lesions, 74 were confirmed to be HER2-positive. The volumetric-tumour histogram-based features were extracted from the combined IVIM and non-Gaussian diffusion model. IVIM and non-Gaussian diffusion parameters obtained from images of the subjects with different molecular prognostic biomarker statuses were compared by Student’s t test or the Mann–Whitney U test. The area under the curve (AUC), sensitivity, and specificity at the best cut-off point were reported. The Spearman correlation coefficient was calculated to analyse the correlations of clinical tumor nodule metastasis (TNM) stage and Ki67 with the IVIM and non-Gaussian diffusion parameters.ResultsThe entropy of mean kurtosis (MK) was significantly higher in the HER2-positive group than in the HER2-negative group (p = 0.015), with an AUC of 0.629 (95% CI 0.546, 0.707), a sensitivity of 62.6%, and a specificity of 66.2%. For HR status, the MD 5th percentile was higher in the HR-positive group of HER2-positive breast cancer (p = 0.041), with an AUC of 0.643 (95% CI 0.523, 0.751), while for lymph node status, the entropy of mean diffusivity (MK) was lower in the lymph node positive group (p = 0.040), with an AUC of 0.587 (95% CI 0.504, 0.668). The clinical TNM stage and Ki67 index were correlated with several histogram parameters.ConclusionVolumetric-lesion histogram analysis of IVIM and the non-Gaussian diffusion model can be used to provide prognostic information about HER2-positive breast cancers and potentially contribute to individualized anti-HER2 targeted therapy plans .

Highlights

  • To evaluate the imaging biomarkers of human epidermal growth factor receptor 2 (HER2) positive breast cancer in comparison to other molecular subtypes and to determine the feasibility of identifying hormone receptor (HR) status and lymph node metastasis status using volumetric-tumour histogram-based analysis through intravoxel incoherent motion (IVIM) and non-Gaussian diffusion

  • Human epidermal growth factor receptor 2 (HER2) positivity, accounting for approximately 15–20% of breast cancers, is defined by HER2 protein overexpression measured by immunohistochemistry (IHC) status (IHC3+) or by fluorescence in situ hybridization (FISH) analysis

  • Our study found that histogram parameters of MD and mean kurtosis (MK) from non-Gaussian diffusion maps can be used as potential biomarkers for differentiating HER2-positive

Read more

Summary

Introduction

To evaluate the imaging biomarkers of human epidermal growth factor receptor 2 (HER2) positive breast cancer in comparison to other molecular subtypes and to determine the feasibility of identifying hormone receptor (HR) status and lymph node metastasis status using volumetric-tumour histogram-based analysis through intravoxel incoherent motion (IVIM) and non-Gaussian diffusion. Diffusion-weighted imaging (DWI) can differentiate benign and malignant breast lesion, to predict the response to neoadjuvant chemotherapy (NAC) and determine associated prognostic factors [7, 8]. Lima et al [9] first investigated the IVIM and non-Gaussian MRI in breast tissue They reported that combining the two diffusion models as integrated biomarkers can improve the diagnostic value for the differentiation between malignant and benign breast lesions without the need for contrast medium and may help understand the tumour biology

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call