Abstract
We consider a compact hyperbolic antiprism. It is a convex polyhedron with [Formula: see text] vertices in the hyperbolic space [Formula: see text]. This polyhedron has a symmetry group [Formula: see text] generated by a mirror-rotational symmetry of order [Formula: see text], i.e. rotation to the angle [Formula: see text] followed by a reflection. We establish necessary and sufficient conditions for the existence of such polyhedra in [Formula: see text]. Then we find relations between their dihedral angles and edge lengths in the form of a cosine rule. Finally, we obtain exact integral formulas expressing the volume of a hyperbolic antiprism in terms of the edge lengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.