Abstract
Synaptic transmission is governed by a series of complex and highly nonlinear mechanisms and pathways in which the dynamics have a profound influence on the overall signal sent to the postsynaptic cell. In simulation, these mechanisms are often represented through kinetic models governed by state variables and rate law equations. Calculations of such ordinary differential equations (ODEs) in kinetic models can be computationally intensive, and although algorithms have been optimally developed to handle ODEs efficiently, simulation of numerous, large and complex kinetic models requires a prohibitively large amount of computational power. Here we present an alternative representation of ionotropic glutamatergic receptors AMPAr and NMDAr kinetic models consisting of input-output surrogates of the receptor models which can capture the nonlinear dynamics seen in the kinetic models. We benchmark this Input-Output (IO) synapse model and compare it with kinetic receptor models to evaluate the simulation time required when using either synapse model, as well as the number of time steps each model needs for simulation. While remaining faithful to the original dynamics of the model, our results indicate that the IO synapse model requires less simulation time than the kinetic models under conditions which elicit normal physiological responses, thereby improving computational efficiency while preserving the complex non-linear dynamics of the receptors. These IO surrogates therefore constitute an appealing alternative to kinetic models in large scale networks simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.