Abstract

Neuroprotection of the spinal cord during the early phase of injury is an important goal to determine a favorable outcome by prevention of delayed pathological events, including excitotoxicity, which otherwise extend the primary damage and amplify the often irreversible loss of motor function. While intensive care and neurosurgical intervention are important treatments, effective neuroprotection requires further experimental studies focused to target vulnerable neurons, particularly motoneurons. The present investigation examined whether the volatile general anesthetic methoxyflurane might protect spinal locomotor networks from kainate-evoked excitotoxicity using an in vitro rat spinal cord preparation as a model. The protocols involved 1h excitotoxic stimulation on day 1 followed by electrophysiological and immunohistochemical testing on day 2. A single administration of methoxyflurane applied together with kainate (1h), or 30 or even 60min later prevented any depression of spinal reflexes, loss of motoneuron excitability, and histological damage. Methoxyflurane per se temporarily decreased synaptic transmission and motoneuron excitability, effects readily reversible on washout. Spinal locomotor activity recorded as alternating electrical discharges from lumbar motor pools was fully preserved on the second day after application of methoxyflurane together with (or after) kainate. These data suggest that a volatile general anesthetic could provide strong electrophysiological and histological neuroprotection that enabled expression of locomotor network activity 1day after the excitotoxic challenge. It is hypothesized that the benefits of early neurosurgery for acute spinal cord injury (SCI) might be enhanced if, in addition to injury decompression and stabilization, the protective role of general anesthesia is exploited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.