Abstract

H13 steel samples were implanted with tungsten using a metal vapor vacuum arc (MEVVA) ion source, with an implantation dose of 1×1017 cm -2, an extraction acceleration of 30 kV and pulsed ion beam fluxes of between 0.3 mA·cm -2 and 6 mA·cm -2. The surface mechanical properties and microstructure for the W-implanted samples was characterized by the Rutherford backscattering spectroscope (RBS) and a high voltage electron microscope (HVEM). Experimental results of wear and hardness indicated that the hardness and wear of H13 steel increased when the voids were produced by tungsten ion implantation with a high pulsed current density. Forming causes for voids and their influence on the tungsten concentration depth profile in the implanted H13 steel and the surface mechanical properties were discussed in terms of spike theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call