Abstract
We introduce the automatic determination of leadership emergence by acoustic and linguistic features in online speeches. Full realism is provided by the varying and challenging acoustic conditions of the presented YouTube corpus of online available speeches labeled by 10 raters and by processing that includes Long Short-Term Memory-based robust voice activity detection (VAD) and automatic speech recognition (ASR) prior to feature extraction. We discuss cluster-preserving scaling of 10 original dimensions for discrete and continuous task modeling, ground truth establishment, and appropriate feature extraction for this novel speaker trait analysis paradigm. In extensive classification and regression runs, different temporal chunkings and optimal late fusion strategies (LFSs) of feature streams are presented. In the result, achievers, charismatic speakers, and teamplayers can be recognized significantly above chance level, reaching up to 72.5 percent accuracy on unseen test data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.