Abstract
The Virtual Retinal Display (VRD) is a new display technology that scans modulated low energy laser light directly onto the viewer's retina to create a perception of a virtual image. This approach provides an unprecedented way to stream photons to the receptors of the eye, affording higher resolution, increased luminance, and potentially a wider field-of-view than previously possible in head coupled displays. The VRD uses video signals from a graphics board or a video camera to modulate low power coherent light from red, green and blue photon sources such as gas lasers, laser diodes and/or light emitting diodes. The modulated light is then combined and piped through a single mode optical fiber. A mechanical resonant scanner and galvanometer mirror then scan the photon stream from the fiber in two dimensions through reflective elements and semitransparent combiner such that a raster of light is imaged on the retina. The pixels produced on the retina have no persistence, yet they create the perception of a brilliant full color, and flicker-free virtual image. Developmental models of the VRD have been shown to produce VGA and SVGA image quality. This paper describes the VRD technology, the advantages that it provides, and areas of human factors research ensuing from scanning light directly onto the retina. Future applications of the VRD are discussed along with new research findings regarding the use of the VRD for people with low vision
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have