Abstract
AbstractRotating turbine blading is subjected to fluctuating gas forces during operation that cause blade vibrations. One of the main tasks in the design of turbomachinery blading is the reduction of the vibration amplitudes of the blades to avoid high resonance stresses that could damage the blading. The vibration amplitudes of the blades can be reduced significantly to a reasonable amount by means of friction damping devices such as underplatform dampers. In the case of blade vibrations, relative displacements between the friction damping devices and the neighboring blades occur and friction forces are generated that provide additional damping to the structure due to the dry friction energy dissipation. In real turbomachinery applications, spatial blade vibrations caused by a complex blade geometry and distributed excitation forces acting on the airfoil accur. Therefore, a three dimensional model including an appropriate spatial contact model to predict the generalized contact forces is necessary to describe the vibrational behavior of the blading with sufficient accuracy, see [1] and [2]. In this paper the contact model presented in [2] is extended to include also local deformations in the contacts between underplatform dampers and the contact surfaces of the adjacent blades. The additional elasticity in the contact influences the resonance frequency of the coupled bladed disk assembly. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.