Abstract
Giant planets embedded in circumstellar discs are expected to open gaps in these discs. We examine the vertical structure of the gap edges. We find that the planet excites spiral arms with significant (Mach number of a half) vertical motion of the gas, and discuss the implications of these motions. In particular, the spiral arms will make the edge appear ‘puffed up’ relative to the bulk of the disc. Infrared observations (sensitive to dust) would be dominated by the light from the thick inner edge of the disc. Submillimetre observations (sensitive to gas velocities) would appear to be hot in ‘turbulent’ motions (actually the ordered motion caused by the passage of the spiral arms), but cold in chemistry. Resolved submillimetre maps of circumstellar discs might even be able to detect the spiral arms directly.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have