Abstract
Evidence for non-zero mean stellar velocities in the direction perpendicular to the Galactic plane has been accumulating from various recent large spectroscopic surveys. Previous analytical and numerical work has shown that a "breathing mode" of the Galactic disc, similar to what is observed in the Solar vicinity, can be the natural consequence of a non-axisymmetric internal perturbation of the disc. Here we provide a general analytical framework, in the context of perturbation theory, allowing us to compute the vertical bulk motions generated by a single internal perturber (bar or spiral pattern). In the case of the Galactic bar, we show that these analytically predicted bulk motions are well in line with the outcome of a numerical simulation. The mean vertical motions induced by the Milky Way bar are small (mean velocity of less than 1 km/sec) and cannot be responsible alone for the observed breathing mode, but they are existing. Our analytical treatment is valid close to the plane for all the non-axisymmetric perturbations of the disc that can be described by small-amplitude Fourier modes. Further work should study how the coupling of multiple internal perturbers and external perturbers is affecting the present analytical results.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have