Abstract
The recently developed code for N-body/hydrodynamics simulations in Modified Newtonian Dynamics (MOND), known as RAyMOND, is used to investigate the consequences of MOND on structure formation in a cosmological context, with a particular focus on the velocity field. This preliminary study investigates the results obtained with the two formulations of MOND implemented in RAyMOND, as well as considering the effects of changing the choice of MOND interpolation function, and the cosmological evolution of the MOND acceleration scale. The simulations are contrived such that structure forms in a background cosmology that is similar to $\Lambda$CDM, but with a significantly lower matter content. Given this, and the fact that a fully consistent MOND cosmology is still lacking, we compare our results with a standard $\Lambda$CDM simulation, rather than observations. As well as demonstrating the effectiveness of using RAyMOND for cosmological simulations, it is shown that a significant enhancement of the velocity field is likely an unavoidable consequence of the gravitational modification implemented in MOND, and may represent a clear observational signature of such a modification. It is further suggested that such a signal may be clearest in intermediate density regions such as cluster outskirts and filaments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.