Abstract

Delta-like ligand 4 (DLL4) and Jagged1 (JAG1), 2 vascular Notch ligands, are involved in the process of tumor angiogenesis. The present study investigates their relationship with microvascularization and the prognostic effect in primary glioblastoma. Tumor tissues from 61 glioblastomas were analyzed using immunohistochemistry for DLL4/JAG1 expression and microvascular formations. The correlations between DLL4/JAG1 and microvascularization were analyzed. The survival probabilities were computed using the Kaplan-Meier method. The Cox proportional hazards regression model was used for multivariate analysis of time to progression (TTP) and overall survival (OS). The results showed increased DLL4 and JAG1 expression in glioblastoma tissues. Five types of basic microvascular formations, including microvascular sprouting, vascular cluster, vascular garland, glomeruloid vascular proliferation, and vasculogenic mimicry, were detected. Glioblastomas with the type I microvascular pattern (MVP) that displayed prominent microvascular sprouting and vascular clusters tended to have higher DLL4 expression, whereas those with the type II MVP that had numerous vascular garlands, glomeruloid vascular proliferations, and vasculogenic mimicries showed upregulated JAG1 expression. Univariate analysis documented that high DLL4 expression, high JAG1 expression, and type II (MVP) were statistically associated with reduced TTP and OS. Multivariate analysis confirmed high DLL4 expression, high JAG1 expression, and type II MVP as significant prognostic factors for both shorter TTP and OS, independent of age, Karnofsky performance scale, and other molecular markers (vascular endothelial growth factor, Ki67, and P53). DLL4 and JAG1 may have opposing effects on tumor angiogenesis in glioblastoma. The Notch pathway may be a new target for antiangiogenic therapy in glioblastoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.