Abstract
Soot-containing terbium (Tb)-embedded fullerenes were prepared by evaporation of Tb4O7-doped graphite rods in an electric arc discharge chamber. After 1,2,4-trichlorobenzene extraction of the soot and rotary evaporation of the extract, a solid product was obtained and then dissolved into toluene by ultrasonication. Through a three-stage high-pressure liquid chromatographic (HPLC) process, Tb@C82 (I, II) isomers were isolated from the toluene solution of fullerenes and metallofullerenes. With the success of the growth of cocrystals of Tb@C82 (I, II) with Ni(OEP), the molecular structures of Tb@C82 (I) and Tb@C82 (II) were confirmed to be Tb@C2v(9)-C82 and Tb@Cs(6)-C82, respectively, based on crystallographic data from X-ray single-crystal diffraction. Moreover, it was found that Tb@C82 (I, II) isomers demonstrated different packing behaviors in their cocrystals with Ni(OEP). Tb@C2v(9)-C82 forms a 1:1 cocrystal with Ni(OEP), in which Tb@C2v(9)-C82 is aligned diagonally between the Ni(OEP) bilayers to form zigzag chains. In sharp contrast, Tb@Cs(6)-C82 forms a 2:2 cocrystal with Ni(OEP), in which Tb@Cs(6)-C82 forms a centrosymmetric dimer that is aligned linearly with Ni(OEP) pairs to form one-dimensional structures in the a-c lattice plane. In addition, the distance of a Ni atom in Ni(OEP) to the Cs(6)-C82 cage is much shorter than that to the C2v(9)-C82 one, indicative of a stronger π-π interaction between Ni(OEP) and the C82 carbon cage in the cocrystal of Tb@CS(6)-C82 and Ni(OEP). Density functional theory calculations reveal that the regionally selective dimerization of Tb@CS(6)-C82 is the result of a dominant unpaired spin existing on a particular C atom of the CS(6)-C82 cage.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.