Abstract

BackgroundDifferent lesions affecting the spinal cord can lead to myelopathy. Diffusion tensor imaging (DTI) is widely used to predict the degree of spinal cord microstructure affection and to assess axonal integrity and diffusion directionality. We hypothesized that not all DTI parameters have the same affection with different spinal cord pathologies. The purpose of this study is to assess the value of the quantitative diffusion tensor imaging indices in different spinal cord lesions.ResultsThere is highly statistically significant difference of the fractional anisotropy (FA), relative anisotropy (RA), volume ratio (VR) and secondary eigenvector values (E2 and E3) between various studied cord lesions and control levels. There is no statistically significant difference of the apparent diffusion coefficient (ADC) and the primary eigenvector value (E1) (ANOVA test). The ROC curve analysis showed the higher sensitivity and accuracy were ‘88% and 62.5%, respectively,’ with FA cutoff value about 0.380.ConclusionThe resulted quantitative DTI indices ‘fractional anisotropy, relative anisotropy, volume ratio and secondary eigenvalues’ work as a numerical in vivo marker of overall tissue injury in different pathologies affecting the spinal cord.

Highlights

  • Different lesions affecting the spinal cord can lead to myelopathy

  • Myelopathy defines any neurologic deficit linked to the spinal cord, which usually arises secondary to compression of the spinal cord by osteophyte or herniated disc material, metastatic extradural mass or trauma

  • Quantitative results between the normal control levels and the cord lesion level in both groups are given in Tables 1 and 2:

Read more

Summary

Introduction

Different lesions affecting the spinal cord can lead to myelopathy. Diffusion tensor imaging (DTI) is widely used to predict the degree of spinal cord microstructure affection and to assess axonal integrity and diffusion directionality. We hypothesized that not all DTI parameters have the same affection with different spinal cord patholo‐ gies. The purpose of this study is to assess the value of the quantitative diffusion tensor imaging indices in different spinal cord lesions. Magnetic resonance imaging (MRI) is currently the most important modality for imaging of the central nervous system. It offers excellent anatomical information as regards the spinal cord macrostructure [2, 3].

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.