Abstract

The geochemical behavior of sulfur in magmas depends strongly on the oxidation state of sulfur, but this is not easily determined by standard analytical methods. We have measured XANES absorption spectra at the sulfur K-edge and have found that such measurements are useful to characterize the oxidation state and speciation of sulfur in silicate glasses of geological rel evance. Measured spectra of a set of reference minerals show the effects of different oxidation states and coordination numbers of sulfur; there is a large shift in energy (~10‐12 eV) of the sulfur K-edge between S 2‐ and S 6+ . This large and easily detectable difference makes possible the measurement of the valence of sulfur in unknown samples by measuring the shift in energy of the absorption edge. This approach is applicable to both crystalline and glassy materials, and useful results have been obtained on samples with as little as 450 ppm S. We have used XANES measurements to characterize oxidation state and speciation of sulfur in a set of natural and synthetic sulfur-bearing glasses. The samples cover a range of composition from basaltic to almost rhyo litic, and some were synthesized over a range of pressure, temperature and oxygen fugacity; glass S content varies between 450 and 3000 ppm. XANES analyses, carried out in fluorescence mode at LURE, allowed determination of the sulfur oxidation state in all of the samples and clearly show that some samples contain a mixture of S 2‐ and S 6+ ; no other sulfur species were observed. Quantitative determination of the abundance of sulfide and sulfate shows good agreement with independent measurements based on electron-microprobe determination of the wavelength shift of sulfur K X-rays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.