Abstract

Abstract The synchrotron technique of micro X-ray absorption near-edge structure spectroscopy at the sulfur K-edge (S-XANES) provides a unique opportunity to measure the proportion of different oxidation states of sulfur (S) in silicate glasses. Although applied extensively in the analysis of basaltic silicate glasses, few S-XANES studies have investigated variations in S oxidation states with fO2 in felsic silicate glasses. In addition, no study has systematically compared the S-XANES results obtained from the same samples at different photon flux densities to quantify the relationship between exposure time and changes in S speciation in silicate glass, as has been done for Fe and V. This study evaluates observed differences in S speciation measured in experimentally produced H2O-saturated dacitic glasses over a range of reducing to oxidizing conditions (from log fO2 = ΔFMQ-0.7 to ΔFMQ+3.3; FMQ is the fayalite-magnetite-quartz mineral redox buffer) and equilibrated at 1000°C and 300 MPa. S-XANES spectra were collected at three different photon flux densities using three microspectroscopy beamlines. As is observed in S-XANES analyses of basaltic silicate glasses, beam-induced changes to the S6+/ΣS are observed as a function of photon flux density and beam exposure time. Our results demonstrate that silicate glasses of dacitic composition undergo beam-induced photo-reduction in samples equilibrated at ΔFMQ > +1.75 and photo-oxidation if equilibrated at ΔFMQ < +1. The time required to observe beam-induced changes in the spectra varies as a function of flux density, and our study establishes an upper photon density limit at ~1.0 × 1012 photons/μm2. The S6+/ΣS calculated from spectra collected below this absorbed photon limit at intermediate flux densities (~1−4 × 109 photons/sec per μm2) are affected by beam damage, as no conditions were found to be completely free of beam-induced changes. However, the S6+/ΣS ratios calculated below the limit at intermediate flux densities are consistent with thermodynamic constraints, demonstrating that S6+/ΣS ratios calculated from S-XANES spectra can be considered reliable for estimating the oxygen fugacity. Our results carry important implications for the S budget of felsic magmas and dissolution mechanisms in evolved melts. While our results from all three flux densities show the presence of S4+ dissolved in relatively oxidized (ΔFMQ > +1.75) dacitic glass, even in the spectra exposed to the lowest photon densities, we are unable to rule out the possibility that the S4+ signal is the result of instantaneous X-ray irradiation induced beam damage using S-XANES alone. When our spectra are compared to S-XANES spectra from basaltic silicate glasses, important differences exist in the solubility of S2- and S6+ between dacitic silicate melts, pointing to differences in solubility mechanisms as melt composition changes. This study highlights the need for further investigation into beam damage systematics, presence of S4+, and the solubility mechanisms of different oxidation states of S as silicate melt composition changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call