Abstract

The calculation of shear viscosity and thermal conductivity coefficients in the presence of a magnetic field requires the accurate calculation of several types of generalized phenomenological cross sections in which velocity and angular momentum tensors are coupled with the orbital and rotational motion of the system. These cross sections are then averaged over energy in a fashion appropriate for the phenomenon of interest. The coupled states (CS) and/or infinite order sudden (IOS) approximations have been used to calculate several such cross sections for systems such as He-HCl, He-CO, He-H/sub 2/, HD-Ne, Ar-N/sub 2/, and Ne-H/sub 2/. Excellent results are obtained compared with close-coupled methods for cross sections which are symmetric in tensor index, especially in the CS approximation, and these results are not very sensitive to the choice of orbital wave parameter. On the other hand, the cross sections which are asymmetric in tensor index are much more sensitive to interference effects and are unsatisfactory in many cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call