Abstract

We describe the utility of small nutation angle (acute; <90°) 1H radiofrequency pulses for efficient manipulation of magnetization in selectively [13CH3]-labeled methyl groups of otherwise deuterated proteins. Focusing primarily on NMR applications that target either fast (pico-to-nanosecond) motions of the methyl group three-fold rotation axis, or slow (micro-to-millisecond) processes associated with chemical exchange, we show that significant simplification of the 13CH3 spin-system and, as a consequence, of NMR pulse schemes, may be achieved in certain cases by the proper choice of the flip-angle of the 1H acute-angle pulse. In other instances, appropriate adjustment of acute-angle 1H pulses permits optimization of the sensitivity of NMR experiments. The results of acute-angle pulse based NMR experiments are validated by comparison with well-established NMR techniques for the characterization of fast dynamics of methyl-containing side-chains and chemical exchange processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call