Abstract
BackgroundComputational models of protein structures were proved to be useful as search models in Molecular Replacement (MR), a common method to solve the phase problem faced by macromolecular crystallography. The success of MR depends on the accuracy of a search model. Unfortunately, this parameter remains unknown until the final structure of the target protein is determined. During the last few years, several Model Quality Assessment Programs (MQAPs) that predict the local accuracy of theoretical models have been developed. In this article, we analyze whether the application of MQAPs improves the utility of theoretical models in MR.ResultsFor our dataset of 615 search models, the real local accuracy of a model increases the MR success ratio by 101% compared to corresponding polyalanine templates. On the contrary, when local model quality is not utilized in MR, the computational models solved only 4.5% more MR searches than polyalanine templates. For the same dataset of the 615 models, a workflow combining MR with predicted local accuracy of a model found 45% more correct solution than polyalanine templates. To predict such accuracy MetaMQAPclust, a “clustering MQAP” was used.ConclusionsUsing comparative models only marginally increases the MR success ratio in comparison to polyalanine structures of templates. However, the situation changes dramatically once comparative models are used together with their predicted local accuracy. A new functionality was added to the GeneSilico Fold Prediction Metaserver in order to build models that are more useful for MR searches. Additionally, we have developed a simple method, AmIgoMR (Am I good for MR?), to predict if an MR search with a template-based model for a given template is likely to find the correct solution.
Highlights
Computational models of protein structures were proved to be useful as search models in Molecular Replacement (MR), a common method to solve the phase problem faced by macromolecular crystallography
For our dataset of 615 search models, the real local accuracy of a model increases the MR success ratio by 101% compared to corresponding polyalanine templates
On the contrary, when local model quality is not utilized in MR, the computational models solved only 4.5% more MR searches than polyalanine templates
Summary
Computational models of protein structures were proved to be useful as search models in Molecular Replacement (MR), a common method to solve the phase problem faced by macromolecular crystallography. The success of MR depends on the accuracy of a search model. This parameter remains unknown until the final structure of the target protein is determined. The determination of a 3D structure of a molecule of interest involves the gathering of the intensity and phase information for a crystal diffraction pattern, from which an electron density map can be calculated. In a diffraction experiment, only the intensity is measured, and information about phases is lost. In most cases of successful MR applications for determination of protein structures, the sequence identity between the target and the template is at least 35% [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.